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To assess risk is to compare risks. Compar-
isons are hidden or overt virtually any time
data and models are used to quantify some
environmental or health hazard. This holds
true whether the social purpose involves set-
ting a standard (which entails comparing the
risk without any intervention to the magni-
tude, uncertainty, and distribution of risks
after intervening), communicating the find-
ings of science (disembodied risk estimates
are meaningless to most people without ref-
erence to background rates or other numeri-
cal indices), or setting priorities (without
comparisons, either nothing would be a pri-
ority or, equivalently, everything would).
And yet, against the countless person-years

of effort that have gone into refining and
codifying the methodology for quantifying
one risk at a time, there has been virtually
no progress in developing principles and
methods for quantifying risk comparisons.

Comparative risk assessment (CRA) is
too important to do poorly. Not only do
government agencies use CRA to influence
the way people think about different risks,
but they are increasingly using it to make
irrevocable choices about which risks to
control and which to accept. Government
must decide, for example, whether to pro-
mote, mandate, or restrict alternative fuels
such as methyl tert-butyl ether (MTBE) for
automobiles; its only choice is whether to
use CRA to compare gasoline and MTBE
or instead to make the decision on intuitive,
political, or other grounds. Either way,
choices such as these will be made, but
reliance on a misleading analytic tool might
be worse than undertaking no analysis at all.

At its current state of development,
however, CRA may be sufficiently flawed
that on balance it causes more harm than
good. Decision-makers cannot use CRA
without asking whether merely knowing
which of two risks is statistically larger is
sufficient to guide regulatory policy or indi-
vidual choice. Even putting this aside, how-
ever, there remains a purely scientific ques-
tion: With current methods of CRA, would
we know a "larger" risk when we saw it?

This article explores a largely unrecog-
nized but fundamental flaw in how CRAs
are performed, using a well-known risk
comparison-the allegation that exposure
to the naturally occurring carcinogen afla-
toxin was definitely and substantially riski-
er than exposure to the pesticide Alar-to
demonstrate the implications of analytic
overconfidence. From this example, gener-
al lessons will be gleaned to offer an
improved paradigm for comparing envi-
ronmental risks.

Background
CRA fell into some disrepute during the
last decade, largely because one particular
form of it, the quantitative contrasting of
markedly dissimilar risks [such as being
overweight versus being exposed to ben-
zene (1)], was increasingly regarded as
unresponsive to important perceptual
judgments and hence as needlessly
manipulative (2,3). Nevertheless, many
other brands of CRA have flourished dur-

ing the same period, while CRA of dis-
similar risks seems to be making a come-
back of late (4,5). In this regard, it is use-
ful to distinguish between what could be
termed "small" and "large" versions of
CRA. The former involves the quantita-
tive comparison of single risks that are
generally less dissimilar than the over-
weight/benzene sort of comparison.
Prominent examples of different types of
"small" uses of CRA include the ranking
of various hazardous waste sites in the
Hazard Ranking System developed by
the Environmental Protection Agency
(EPA), the analysis of "risk/risk trade-
offs" such as the choice between cancer
risks due to the disinfection of drinking
water and pathogenic risks due to the
failure to disinfect (6), and the ranking
of various common pollutants (both nat-
urally-occurring and synthetic), either in
order of inherent toxicologic potency or
of excess risk under specified exposure
conditions ().

"Large" CRA involves the comparison
of categories of risks and is increasingly
being invoked as a means of putting the
United States' allegedly haphazard envi-
ronmental priorities in a "rational"
sequence (8-11). For example, a recent
magazine article cites as strong evidence
that "we still haven't figured out what is
really worth worrying about" the dispari-
ty between the $0.1 billion society spends
annually on controlling indoor radon,
which EPA estimates may cause as many
as 20,000 lung cancer deaths each year,
and the $6 billion spent on cleaning up
hazardous waste sites, which purportedly
cause fewer than 500 annual cancer
deaths (12).

Misplaced Criticism of Comparative
Risk Assessment
By far the most commonly criticized
attribute of CRA is its alleged reliance on
juxtaposing partially or totally incommen-
surable situations: the classic "you can't
compare apples and oranges" problem [see
Covello et al. (13) for this criticism
applied to small CRA; see Hornstein (14)
for an application to large CRA].
Although CRA is indeed difficult to do
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and easy to botch, the major obstacle is not
the qualitative differences between risks,
but a completely different and largely
ignored problem: the uncertainty in quan-
titative risk magnitude. Ironically, critics of
CRA thus may well be right, but for the
wrong reasons.

The impotence of the accusation of
incommensurability is relatively easy to
demonstrate. We all routinely compare
highly dissimilar states by the simple (at
least conceptually) cognitive process that
involves: 1) disaggregating each situation
or choice into its salient attributes (in the
literal apple/orange comparison, these
would be price, taste, nutritive value,
appearance, etc.); 2) gauging how much of
each attribute each situation or choice
embodies; 3) assessing how much we value
each attribute; and 4) aggregating the indi-
vidual value judgments into a composite
evaluation for comparison.

So apples and oranges are not incom-
mensurable at all, and neither are disparate
risks to health. In fact, when researchers
tested empirically the most widely accepted
predictions about how laypeople were sup-
posed to react to various kinds of risk com-
parisons, the responses either did not sup-
port or else contradicted the thesis that the
more dissimilar the comparison, the less
acceptable and more aggravating the recipi-
ents would find it (3,15). For example,
those surveyed by Roth et al. (3) generally
regarded a hypothetical comparison of two
different estimates of the same pollutant
risk [a type of comparison Slovic (15) had
put in their "first rank" of very acceptable
communication techniques] as less reassur-
ing, informative, and trust-engendering
than a comparison of the pollutant risk
with the risk of lightning, hurricanes, and
insect bites (one of the Slovic et al.'s "fifth
rank" or "rarely acceptable" comparisons).

The real problem in comparing risks is
not that they differ in (known) qualitative
respects, but that they differ in unknown
quantitative respects. No amount of careful
thought could make a choice between buy-
ing apples or buying oranges anything but
arbitrary if one could neither discern nor
control the price, taste, or appearance of
either commodity. A numerical comparison
between uncertain health risks, made with-
out taking account of the uncertainty, is like
shopping for produce sight unseen when
one foodstuff might be expensive and rotten
and the other cheap and flawless. And yet
this is exacdy how environmental risk asses-
sors routinely make risk comparisons.

The further irony in this situation is
that the analytic tool for making honest
comparisons of uncertain risks-quantita-
tive uncertainty analysis-is already well
developed but languishes unused for this
important application. For almost as long

as risk assessment has existed, researchers
have used tools such as expert judgment,
Bayesian analysis, and Monte Carlo simu-
lation to estimate the uncertainty sur-
rounding single risks (16,1X). These uncer-
tainties arise, among other sources, from
our inability to measure precisely the quan-
tities that drive the risk assessment models
we use (parameter uncertainty) and from
our inability to know which of two or
more alternative models is in fact correct or
most useful (model uncertainty). The most
recent report on risk assessment by the
National Research Council (18) contains
numerous recommendations instructing
EPA (which has lagged behind the
advances in academia) to abandon its
reliance on point estimates of risk for stan-
dard setting and to instead quantify uncer-
tainty in risk using existing data and
methodologies. However, none of the aca-
demic literature on uncertainty in risk, nor
any of the practical applications conducted
by EPA and other stakeholders in risk
management policy, has ever applied the
methodology to risk comparison.

This omission is particularly glaring
because the mathematics of uncertainty
dictate that dividing one uncertain risk by
another to arrive at a comparative assess-
ment magnifies rather than attenuates or
cancels the uncertainty present in each risk
(as long as the uncertainties do not arise
from identical sources). For example, sup-
pose you can guess the weight of person A
to within a factor of 1.2 (e.g., your best
guess is 180 pounds but you are confident
A weighs between 150 and 216 pounds),
and you can also guess the weight of B
within a factor of 1.2 (e.g., your best guess
is 150 and the range is between 125 and
180). Then, your best estimate of their rel-
ative weights would be 1.2 (180/150), but
the uncertainty about this comparative
estimate would range between 0.83
(150/180) and 1.73 (216/125). The uncer-
tainty about the ratio estimate is now a fac-
tor of 1.44 on either side of the central
estimate, larger than was present for either
risk alone. Notice further that one cannot
say with confidence that A weighs more
than B. Thus, it is precisely for those appli-
cations where we can be least confident in
our results that we devote the least effort to
exploring how error-prone our answers
might be.

Exploring Overconfidence in Risk
Comparison
To develop and explore the implications of a
more technically sound paradigm for CRA, I
reexamined one of the most influential
examples of small CRA: the conclusion
reached by a group led by Ames (19) that
the aflatoxin B1 contained in a daily ration
of peanut butter posed 18 times greater risk

than the growth regulator daminozide (Alar)
in a daily ration of apple juice (a risk largely
due to Alar's hydrolysis product unsymmet-
rical dimethylhydrazine, or UDMH, a
potent rodent carcinogen). [This point esti-
mate of risk has undergone some minor
metamorphoses since it first appeared.
Originally, Ames and Gold (19) presented
the HERP (human exposure/rodent poten-
cy) index for aflatoxin (0.03%) as 17.6 times
that of UDMH (0.0017%). Some weeks
later, Ames cited a ratio of 10:1 (20), and
later in 1989 then-FDA Commissioner
Frank Young attributed to Ames a ratio of
30:1 (21). More recently, Uniroyal
Chemical Company, the manufacturer of
Alar, cited a ratio of 300:1 (22). In their
most recent update of the HERP table (23),
Ames and colleagues provided more infor-
mation on the inputs to these numbers, but
the implicit ratio remained essentially the
same (0.03%/0.002%, or 15:1).] Whatever
the precise number touted, it consists of the
ratio of two risk estimates, each of which is
composed of at least two uncertain inputs (at
the highest level of aggregation, exposure
and carcinogenic potency). Thus, any com-
parison of two HERP values (or other risk
estimates) to generate a risk ratio entails cal-
culating the uncertain quotient of two
uncertain quotients. The sign and the mag-
nitude of these estimates of the
aflatoxin/Alar risk ratio have been cited to
support the view that the "artificial" hazard
of Alar is (or was) trivial compared to the
magnitude of the risk from aflatoxin, a "nat-
ural" risk consumers supposedly deem
acceptable (24).

It is conceivable, of course, that any
estimate of this particular risk ratio, even if
surrounded by a range of uncertainty, is
meaningless because one or both of the
substances involved are not carcinogenic in
humans. A superficial look at Alar and afla-
toxin might suggest that the latter is a
"known" human carcinogen while the for-
mer is only known to cause tumors in
rodents. But that would be a premature
judgment. First, although in a few cases,
such as saccharin and unleaded gasoline,
directed research on chemical-specific
mechanisms has cast serious doubt on
whether certain animal carcinogens present
any risk to humans at low doses, no such
evidence or theory currently exists in the
case ofUDMH that would explain a quali-
tative interspecies difference. Besides, the
lack of epidemiologic data (positive or neg-
ative) on UDMH does not necessarily dis-
tinguish it from an extensively studied
chemical like aflatoxin. In no single case
has "negative" epidemiologic data alone
been of sufficient power to invalidate posi-
tive animal data (25); the fact that UDMH
is not a "known" human carcinogen says
more about what we know than about
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what properties the chemical truly does or
does not possess. In particular, the human
data on these two substances may only dif-
fer because one (aflatoxin) is associated
with a rare cancer (primary hepatocellular
carcinoma) that stands out from the back-
ground, while the other may well increase
the incidence of some more common
tumor type(s) that could not be detected in
a typical epidemiologic study. In any
event, the method used here to quantify
uncertainty in carcinogenic potency explic-
itly accounts for the additional uncertainty
caused by the possibility that UDMH may
pose zero or near-zero risks at low doses
because we cannot be confident that the
rodent tumors are relevant to humans.
Finally, recently emerging evidence sug-
gests that aflatoxin may not be a significant
contributor to human liver cancer.
Campbell et al. (26) claim that previous
analyses of the epidemiologic data on afla-
toxin were confounded by the failure to
control for dietary variables and that afla-
toxin is "an unnecessary and insufficient
cause" as compared to viral and nutritional
factors. The CRA presented here, like all
previous ones, will not directly account for
the model uncertainty contributed by the
possibility that one or both contaminants
are noncarcinogenic in humans, but will
instead concentrate on the substantial
amount of uncertainty present even assum-
ing both substances pose non-zero risk.

Methods
The excess cancer risk to an individual con-
sumer (X) of peanut butter or apple juice (j)
is a function of three factors: 1) the amount
of the foodstuff consumed each day (A); 2)
the concentration of aflatoxin or UDMH
in the foodstuff (C1); and 3) the carcino-
genic potency of each contaminant (f3.).
The first two of these quantities can be
measured reasonably precisely, but they
vary substantially among individuals; the
third might be invariant across the popula-
tion (if each person had equal biological
susceptibility to the carcinogenic stimulus),
but it clearly cannot be estimated without
considerable ambiguity. With the appropri-
ate units specified, risk is simply the prod-
uct of these three quantities divided by the
body weight of the individual (in this
example, body weight was assumed to be
invariant; the value 20 kg was chosen to
represent a 4-year-old-child).

Rij = [Aij (g/day) x Cij (ppb) x 10-6 (mg/ng)] xR
(excess lifetime risk per mg/kg-day)]/20 kg

Point estimates such as the 18:1 risk ratio
are derived by multiplying single values for
consumption, concentration, and potency
and reporting the quotient of the two result-
ing risk estimates as a single number. Since

each of the three inputs for each risk esti-
mate can be described more correctly by a
probability density function (PDF) than by
an arbitrary point estimate, the raw material
for a more sound approach to CRA entails
first deriving these PDFs and then combin-
ing them to yield an estimate of the risk
ratio with its associated uncertainty.
Combining the PDFs is now computation-
ally simple, with the advent of microcom-
puters to perform Monte Carlo simulation.
In this method, a value from each PDF is
chosen at random via an algorithm that
ensures that the probability of selecting any
value is the same as the underlying probabil-
ity in the PDF. A single Monte Carlo itera-
tion consists of a random draw from each
PDF followed by the appropriate functional
combination thereof (in this case, multipli-
cation of three numbers to estimate each
risk, followed by division of one risk esti-
mate by the other). With repeated iterations
(20,000 in this analysis), a PDF emerges for
the output which asymptotically matches
the distribution that would be obtained if
the individual PDFs could be combined
analytically [for this analysis, the Monte
Carlo software "@RISK" (version 1.1 for
Microsoft Excel, Palisade Corp., Newfield,
New York) was used].

Data Sources
Food consumption. Data on the amount of
peanut butter and apple juice consumed by
children were obtained from a nationwide
survey conducted by the U.S. Department
of Agriculture (27). This survey of almost
38,000 persons, including 1,719 children
ages 3-5, provides information on the aver-
age quantity of each foodstuff consumed
each day, and also gives seven percentile
points of the cumulative distribution of
consumption across the population. In this
analysis, the PDF for peanut butter con-
sumption was well-approximated via a log-
normal distribution with a median of 8
g/day and logarithmic standard deviation
aln= 0.84. The data on apple juice con-
sumption were also well approximated by a
lognormal PDF with a median of 83 g/day
and a logarithmic standard deviation of 1.0.
For reference, the point estimates of con-
sumption Ames (19) apparently used (32
g/day for peanut butter and 120 g/day for
apple juice) lie at approximately the 95th
and the 64th percentiles of their respective
PDFs. Without the distributional informa-
tion, one would not be aware that these
point estimates differ in their degree of
"conservatism" (in such a way as to help
make aflatoxin seem riskier than Alar), or
that neither estimate reasonably approxi-
mates the amount of each food eaten either
by frequent or by sporadic consumers.

Residue levels. Data on aflatoxin levels
in 44,788 samples of peanut butter made

from the 1986, 1987, and 1988 peanut
crops were provided by the National
Peanut Council (28). Data from the three
crop years were combined to yield a dis-
crete distribution consisting of 13 different
possible residue levels and their associated
probabilities; the overall mean of this dis-
tribution was 2.82 ppb (this distribution
was approximately lognormal in shape, but
because it had a slightly shorter right-hand
"tail" than the continuous distribution
would have yielded, the measured dis-
cretized values were used instead). The
point estimate of concentration used by
Ames [2 ppb (19)] lies at approximately
the 40th percentile of this distribution. In
contrast, Consumer Reports noted in 1990
(29) that 86 samples of peanut butter test-
ed averaged 5.7 ppb of aflatoxin. However,
they deliberately oversampled from less
well-known brands (30).

Residue levels for UDMH in apple
juice were provided courtesy of the
Uniroyal Chemical Company (31).
Uniroyal analyzed 71 samples of apple
juice for UDMH content; the juice came
from the 1985 or 1986 apple crops. The
sample mean was 13.8 ppb, and the maxi-
mum concentration was 83 ppb. [There is
a separate category of "baby apple juice,"
the small jars that infants (and some tod-
dlers) consume. The mean UDMH con-
tent in the 71 samples of baby apple juice
was nearly twice that of the adult product,
and the maximum single value was 112
ppb (31). Thus, using only "adult" apple
juice data tends to underestimate both the
relative and absolute risk ofUDMH expo-
sure.] Due to the small number of samples
and the fact that the data clumped into at
least four modal groups (35 of the 71 val-
ues were clustered either around 1, 8, 13,
or 33 ppb), the PDF used in the analysis
consisted of the data points themselves; in
the Monte Carlo procedure, 1 of these 71
values was chosen at random at each itera-
tion. Ames (19) apparently assumed that
apple juice always contains about 7.5 ppb
UDMH; this value lies at about the 45th
percentile of the distribution of measured
residue levels.

Carcinogenic potency. The most diffi-
cult portion of the analysis was the genera-
tion of the PDFs for cancer potency, as no
standard methods currently exist for deriv-
ing such distributions (32). Two different
methods were used here, reflecting the dis-
tinction between a "known human car-
cinogen" (aflatoxin) and a substance
(UDMH) for which only animal bioassay
data are available.

The distribution for the potency of
aflatoxin (Table 1) was derived from a risk
assessment recently completed by the
California Environmental Protection
Agency (CalEPA) (33), which made use of
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new epidemiologic data compiled by Yeh
et al. (34). This was a cohort study of
approximately 8000 persons in Guangxi,
China, examining the relationship between
aflatoxin exposure and primary hepatocel-
lular carcinoma, controlling for concurrent
infection with the hepatitis B virus (HBV).
CalEPA tested five mathematical models
and recommended the interactive effects
form of the excess risk model, based on its
fit to the Guangxi data, the stability of the
parameter estimates obtained, and its abili-
ty to predict liver cancer incidence in the
United States given reasonable assump-
tions about HBV prevalence and aflatoxin
exposures. [The interactive excess risk
model has the form y = a + fl1H + f32d +
f3Hd, where y is liver cancer incidence, a is
the background incidence (in the absence
of HBV infection or aflatoxin exposure), d
is the daily dose of aflatoxin, H is a
dummy variable indexing HBV carrier sta-
tus (1 = positive, 0 = negative), and the f3i
are fitted coefficients representing the
HBV effect, the potency of aflatoxin, and
the interactive effect, respectively.] Using
the CalEPA regression equations and the
standard errors they reported, maximum
likelihood estimates (MLEs) and 5th and
95th percentile values for W3 (the potency
of aflatoxin in an HBV-negative person)
and f' (the potency in an HBV-positive
person) were derived (see Table 1). In the
@RISK spreadsheet, these normal distribu-
tions were truncated at zero so that nega-
tive values for potency could not occur. At
each iteration in the Monte Carlo simula-
tion, the potency of aflatoxin is determined
with reference to f, the assumed prevalence
of HBV-positive individuals in the popula-
tion. According to the CalEPA report (33),
plausible values for f in the U.S. popula-
tion range between 0.1% and 1%; a value
of 1% for fwas chosen here, an assump-
tion that tends to overstate the relative and
absolute risk of aflatoxin exposure. The
Monte Carlo process then randomly
chooses values from either the 9+ or W3-
PDFs, in a 1:99 ratio, thereby preserving
the bimodality of the PDF for the potency
of aflatoxin to a randomly chosen person
in the population.

The PDF for the potency ofUDMH is
derived by a rather different procedure
because no human data exist for this sub-
stance. There are various troublesome
sources of uncertainty in analyzing an ani-
mal bioassay and extrapolating the results
to humans, including the choice of
dose-response model, interspecies scaling
of exposure and susceptibility, and random
sampling error affecting the small groups
of rodents tested. EPA pays some attention
to the last of these three uncertainties by
publishing the 95th percentile upper confi-
dence limit (UCL) on the slope of the lin-

earized dose-response function that fits the
observed tumorigenicity data acceptably
well. In addition, EPA usually includes the
caveat that the true slope at low doses
"could be as low as zero." There are several
problems with this approach: 1) for each
case, it provides the risk manager and the
public no idea how likely the UCL, zero,
and all values in between are to be true, or
even whether the value zero is plausible at
all; 2) it gives no information on the
nature and implications of the 5% of the
distribution above the UCL; 3) it does not
allow for nonlinear dose-response func-
tions, in effect treating "potency" as a
scalar independent of dose; and 4) it
assumes, probably incorrectly, that the
asymptotic confidence limits (derived by
examining changes in the log-likelihood
function with reference to the %2 distribu-
tion) are valid for the case of small samples
and constrained (non-negative) optimiza-
tion of the regression coefficients (35,36).

I have adapted work of Guess et al.
(35), Sielken (37), and others to develop a
method for quantifying potency uncertain-
ty that addresses these four problems [but
that, like EPA's approach, does not deal
fully with model uncertainty in dose
response (e.g., the possibility that a thresh-
old exists) or in interspecies scaling (38)].
The method involves performing a boot-
strap analysis of the observed bioassay data.
For example, if the original bioassay had a
single positive dose group in which 20 ani-
mals out of 50 tested developed tumors,
the simulated bioassays would have tumor
responses ranging from perhaps 15 to 25
animals, depending on the assumption
made about the sampling error inherent in
the single data point. If 10,000 such simu-
lations were generated, and the resulting

Table 1. Input probability density functions for
potency of aflatoxina

HBV status
Negative Positive

Mean 15.4 202.9
SD 7.3 55.7
5th Percentile 3.4 111.3
95th Percentile 27.4 294.5

apotency is expressed in units of (mg/kg-day)-1;
the values in this table have been standardized
via the surface area correction to apply to a 20-
kg child.

(linear) dose-response functions were put
in ascending order of steepness, the 500th
highest observation of the slope of the line
would provide an alternative estimate of
the 95th UCL of potency. The method
uses the computer program "MSTAGE87"
(version 1.1, courtesy E. Crouch,
Cambridge, Massachusetts) to calculate the
best-fitting polynomial for each simulated
data set. By keeping track of all the coeffi-
cients, potency can depend on higher-
order terms when the linear term is esti-
mated to be near zero (i.e., the distinction
between "the potency is zero" and "the
dose-response curve is quadratic at low
doses" is not muddled).

The bootstrap uncertainty analysis was
applied to a new bioassay of UDMH car-
cinogenicity sponsored by Uniroyal (39).
Table 2 shows the results of the new
UDMH bioassay; because individually
coded data for each test animal were not
available, only the primary tumor response
(hemangiosarcomas plus hemangiomas)
was considered, not the total number of
animals with tumors at any site (this would
include pulmonary neoplasms as well).
CalEPA recently completed an analysis of
this bioassay (40) and calculated a potency
value somewhat higher than EPA's.
CalEPA used the tumor site that gave the
highest UCL for potency, namely, pul-
monary carcinomas/adenomas; here, EPA's
assumptions about the appropriate data set
were used, largely because the blood vessel
tumors were so rare in the control animals,
in contrast to the pulmonary tumors
(35/100 pulmonary tumors among con-
trols, as opposed to only 5/100 vascular
tumors among controls).

The bootstrap resampling consisted of
5000 simulated data sets (see Table 3). The
fitted values for G X the linear term in the
multistage polynomial, ranged from 0 (5.2%
of all values) to 1.54; the median value for
31 was 0.508, and the 5th and 95th per-
centiles were 0 and 0.850, respectively. The
PDF is approximately normal, as would be
expected when the observed bioassay data
are roughly linear; when the observed data
can best be fit by a polynomial with no lin-
ear term, the PDF for f 1 is approximately
exponential in shape (38). The 5000 pairs of
91 and 2 values were sampled at random in
the Monte Carlo process. The risk of

Table 2. Data on carcinogenicity bioassay of unsymmetrical dimethylhydrazine (UMDH) in male mice (39)
Incidence of

UDMH concentration in Human equivalent dose hemangiosarcomas/
drinking water (ppm) Dose (mg/kg-day) (mg/kg-day)a hemangiomas

0 0 0 5/66
40 7.34 0.8797 31/67
80 13.7 1.65 43/68

aRodent doses were converted to the equivalent doses for a 20-kg child by dividing by the factor
(20/0.035)1/3, where 0.035 kg is the average weight of a male mouse. This procedure assumes that chil-
dren and mice are equally susceptible to UDMH on a dose per surface-area basis.
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UDMH exposure was calculated at each
iteration as (f d + f 2d2), where the dose d
was defined as intake x residue concentra-
tion/body weight). Thus, the computations
account for the possible sublinearity of the
UDMH dose-response function and permit
some probability that the risk to humans at
low doses is essentially zero.

Note that the new bioassay data give
similar values for the potency ofUDMH to
those of the controversial Toth study (41),
although the extent to which the new study
should be interpreted as confirming, modify-
ing, or invalidating the earlier one still seems
to be a subject of controversy (42-44). The
maxiumum likelihood estimate and UCL
for f1 in the Toth study (if adjusted to a 20-
kg child) were 0.680 and 0.907, respectively.

Table 4 summarizes some key parame-
ters for each of the six input distributions.
The sizes of the uncertainties in these para-
meters are typical of those encountered in
previous assessments of the uncertainty in
risks assessed singly. Several of the parame-

ters have rather "tight" distributions (i.e.,
their 95th-percentile values are less than 10
times higher than their 5th percentile val-
ues), while one (UDMH residue) varies by
nearly 100-fold, and another (UDMH
potency) is "infinitely uncertain" in the
sense that its lower bound could be zero.
For comparison, Finley et al. (45) suggested
distributions for 12 of the parameters com-
monly encountered in more complicated
multimedia exposure assessments. Some of
the distributions they recommend are as
tight as some of those in Table 4 (e.g.,
inhalation rates among adults vary between
approximately 8 and 16 m3/day, to a 90%
degree of confidence), while others (e.g.,
the number of years an individual is likely
to live at one residence before moving) vary
by more than 100-fold, and still others
(e.g., the amount of soil a child ingests each
day) resemble the UDMH potency distrib-

ution in that there is a nontrivial probabili-
ty that zero is the true value.

Results
Figure 1 shows the cumulative probability
distribution functions (CDFs) for the
excess lifetime risks of peanut butter and
apple juice consumption. Selected summa-
ry statistics of these distributions are pre-
sented in Table 5. The CDF for UDMH
risk has a slightly higher median than the
aflatoxin risk CDF, but because the former
distribution has a much longer right-hand
tail, its mean is nearly twice as high as the
latter distribution's mean value.

The effect of this overlapping of the
two risk distributions is shown in Figure 2,
which depicts the PDF for the common
logarithm of the ratio of the UDMH risk
to the aflatoxin risk. Several features of this
PDF are noteworthy, in light of the deter-

Table 3. Summary statistics for uncertainty in car-
cinogenic potency (I1) of unsymmetrical dimethyl-
hydrazine (UMDH) (adjusted to 20-kg child)

CalEPA U.S. EPA
data set data set

Probability B1 = 0 3.9% 5.2%
5th Percentile 0.067 0
10th Percentile 0.26 0.13
25th Percentile 0.60 0.35
50th Percentile 0.82 0.51
75th Percentile 1.0 0.62
90th Percentile 1.18 0.73
95th Percentile 1.35 0.85

Asymptotica 0.36,0.92,1.16 0.20,0.58, 0.72
(5th, MLE, 95th)

8The asymptotic values for B1 were calculated in
the same manner as EPA does, by determining the
slope of the linearized dose-reponse function that
maximizes the likelihood function given the
observed bioassay data (the maximum likelihood
estimate; MLE), and then increasing or decreasing
the linear coefficient of the dose-response func-
tion until it could be rejected as not fitting the data
at an upper or lower p = 0.05 level of confidence
(via reference to the X2 distribution). Note that the
bootstrap resampling technique described in the
main text yields distributions that are somewhat
broader than those generated by the EPA method.

0.9

0.8

Zft 0.7

.0 0.6
07

ffi 0.5
0.6

' 0.3

0.2

0.1

0
0 5 10 15 20 25 30

Risk {x 10-5)

Figure 1. Cumulative distribution functions (CDFs) for the excess lifetime risk of peanut butter (blue curve)
and apple juice ingestion (red curve). In either curve, the X-coordinate corresponding to a given value on
the Y-axis represents the risk level that with probability y is less than or equal to the true but unknown
value of risk. For example, the curves intersect at approximately y= 0.5, so there is roughly a 50% chance
that either risk is less than about 1.3 x 10-5 (see Table 5 for a tabular representation of this figure). The red
curve lies below the blue curve above y= 0.5, which means that as one approaches 'worst-case" condi-
tions, unsymmetrical dimethylhydrazine (UDMH) is (much) riskier than aflatoxin (e.g., there is a 5% chance
the risk of aflatoxin exceeds 1 x 10-4, whereas continuing horizontally from y= 0.95, the UDMH curve is not
intersected until the risk level equals 2 x 10-4).

Table 4. Characteristics of the probability density functions (PDFs) for the input variables

Percentile
Uncertainty location of

Variable Units Median Mean 5th %ile 95th %ile factor' meanb
Peanut butter consumption g/day 8.00 11.38 2.00 31.86 15.93 66
Apple juice consumption g/day 83.00 136.84 16.02 430.02 26.84 69
Aflatoxin residue ppb 2.50 2.82 1.00 6.50 6.50 61
UDMH residue ppb 9.00 13.75 0.5 42.00 84.00 67
Aflatoxin potency (mg/kg-day)' 15.40 17.50 4.02 28.23 7.02 61
(population average)
UDMH potency (mg/kg-day)-l 0.508 0.490 0 0.850 43
(linear term only)
UMDH, unsymmetrical dimethylhydrazine.
aRatio of the 95th to the 5th percentiles.
bPercentile of the PDF where the arithmetic mean is located; a measure both of skewness and heaviness of tail.
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ministic point estimates of Ames and oth-
ers that this ratio is approximately 1:18.

The central tendency estimates (both
the median and the mode) ofthis ratio are
virtually indistinguishable from 1:1. This
indicates a comparative risk for apple juice
consumption at least an order of magni-
tude higher than any of the point estimates
cited (19-23). Contrasting this result with
previous risk comparisons reveals another
intrinsic flaw in the use of point estimates.
Because previous investigations failed to
place the point estimates of inputs and
results in context (i.e., were they central,
lower-bound, or upper-bound numbers?),
it is unclear whether the difference
between 18:1 and 1:1 is due to a shift in
the conservativeness of these estimators,
due to changes in the input data (e.g., the
newer bioassay ofUDMH), or both.

More important than any single esti-
mate of the comparative risk is the large
uncertainty revealed here to affect that
comparison. It happens that the central
estimate of this particular risk ratio is so
close to unity that it is clearly reckless to
conclude that either risk is definitely
greater than the other. The faint signal
that aflatoxin may on average be 1.03
times riskier than UDMH is far out-
weighed by the "noise" in the comparison,
which extends over four orders of magni-
tude at a 90% confidence level (from
376:1 in favor of aflatoxin to 34:1 in favor
of Alar, a difference of a factor of 12,700).
A nonparametric measure of the amount
of overlap in the two risks was also com-
puted to supplement this comparison of
the median of the risk ratio to its own
variance. By the Wilcoxon rank-sum test
(46), the two risk PDFs are indistinguish-

able (z = 0.525, p = 0.3), so the hypothesis
that the two PDFs are different must be
rejected. Readers who sense that there is a
paradox here (how can the two risks be
simultaneously "the same" and yet differ
by 30 or 300-fold?) may be caught in a
semantic trap. There is no inconsistency
in believing both parts of that statement.
It is the distributions that are statistically
indistinguishable; since the true value of
either risk could fall anywhere within its
own PDF, two independent risks with
similar PDFs may, in fact differ wildly.

The major point of this article (and of
improving CRA in general) is not to
engage in "dueling point estimates," but
to progress beyond any single point esti-
mate comparison by changing the curren-
cy with which risks are expressed. In other
words, this analysis shows that 18:1, 1:1,
1:18, and other answers are all legitimate,
but that none of them alone expresses the
risk correctly. Assuming this analysis is
computationally sound, the only informa-
tive way to express the comparative risk of
aflatoxin and Alar is to acknowledge the
multiplicity of legitimate quantitative
conclusions. A statement such as "to a
reasonably high degree of confidence,
aflatoxin is no more than 376 times riski-
er than Alar; on the other hand, Alar
could be as much as 34 times riskier than
aflatoxin" (see Table 5) has the virtue of
candor and of revealing the complexity of
any decision to control (or be concerned
about) one or the other substance prefer-
entially. Its drawback, that it does not
lend itself to black-and-white conclusions,
is equally prominent, but one must bal-
ance the tidiness of a point estimate such
as 18:1 against the virtual certainty that

Table 5. Summary statistics for output distributions (N= 20,000)

UDMH risk Aflatoxin risk Ratio UDMH/aflatoxina
Minimum 0 3.99 x 10-9 0

percentile 1.97 x 10-11 4.42 x 10-7 1.58 x 10o6 (1:632,911)
I.Ith Percentile 4.14 x 10-1& 9.26 x 10-7 3.43 x 10-5 (1:29,155)
5th Percentile 6.38 x 10-8 1.46 x 10-6 2.66 x 10-3 (1:376)
10th Percentile 6.15 x 10-7 2.35 x 10-6 2.79 x10-2 (1:36)
25th Percentile 3.22 x 10-6 5.31 x 10-6 0.193 (1:5)
50th Percentile 1.33 x 10-5 1.26 x i0-5 0.972 (1:1.03)
75th Percentile 4.29 x 10-5 2.95 x 10-5 4.33
90th Percentile 1.09 x 10-4 6.18 x 10-5 15.96
95th Percentile 1.83 x 10-4 9.57 x 10-5 33.88
97.5th Percentile 2.97 x 10-4 1.39 x 10-4 64.52
99th Percentile 4.81 x 10-4 2.15 x 10-4 139.82
Maximum 5.97 x 10-3 1.44 x 10-3 17,545.6
Meanb 4.60 x 10-5 2.72 x 10-5

UMDH, unsymmetrical dimethylhydrazine
aNote that the values in the third column of numbers are not simply the quotients of the numbers in the
first and second columns; the third column contains the summary statistics of a separate probability den-
sity function (PDF) derived from the Monte Carlo simulation that takes into account the possibility that
one risk truly lies in the left-hand tail of its own PDF while the other true value lies in its own right-hand
tail (and, with equivalent probability, vice versa).
bNote that the arithmetic mean of the distribution of ratios is a nonsensical statistic, and hence is not
reported here. Since ratios are inherently geometric (as opposed to arithmetic) quantities, their arith-
metic mean gives disproportionate weight to cases where the numerator exceeds the denominator, and
is thus entirely an artifact of which risk is placed in the numerator (i.e., the means of A/B and of B/A might
both be greater than 1).

other comparative risk estimates (and
hence other social or personal decisions)
are at least equally valid.

The impact of the uncertainty on the
comparative risk assessment is robust to
computational differences between this
and previous analyses and to assumptions
about the human carcinogenicity of
UDMH. Again, even though the contrast
between 18:1 and 1:1 is subsidiary to the
larger difference between point estimates
and expressions acknowledging uncer-
tainty, Figure 2 reveals that even if this
analysis suffered from a hidden systemat-
ic flaw that biased it toward overstating
the relative risk of UDMH (which I
argue is not a strong possibility), the gen-
eral point still stands that a facile com-
parison is vulnerable to serious error.
Suppose, for the sake of argument, that
such a hidden flaw was found and the
entire PDF in Figure 2 was shifted 18-
fold to the left (that is, matching the cen-
tral tendency exactly to Ames's 18:1 esti-
mate). There would still be a roughly
10% chance that apple juice was riskier
than peanut butter, and a roughly 1%
chance it was more than 10 times riskier.
Similarly, even if those convinced that
UDMH is not a human carcinogen (see
above) could successfully argue (presum-
ably bringing to the table some concrete
evidence, either direct or indirect) that
there was a 90% probability its risk was
zero, there would still be about a 5%
chance that UDMH was riskier than afla-
toxin. It is entirely a question of policy
and values, not of science, whether even
an analysis that might have shown such a
90/10 or 95/5 split could legitimately be
reduced to the overconfident pronounce-
ment that "peanut butter is riskier."

The PDF is not obviously biased
toward overstating or understating the
extent of uncertainty. Since the three fac-
tors analyzed are only some of the major
uncertainties and variabilities affecting
these two risk assessments, the results pre-
sented here might well understate the true
ambiguity in the risk ratio. For example,
the analysis assumes that every person is
equally susceptible to the carcinogenic
effects of aflatoxin or of UDMH; this
assumption, though commonly made,
ignores evidence that inborn and acquired
variations in enzymatic metabolism, DNA
repair, immune surveillance, and other
factors cause individual susceptibility to
cancer for a given exposure to vary widely
[with perhaps three to four orders of mag-
nitude separating the most susceptible and
least susceptible portions of the "normal"
population (47)]. This omission tends to
bias both of the absolute risk estimates
downward (18). On the other hand, there
are several features of this analysis that
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might contribute to an overstatement of
the total uncertainty in the comparison.
Notably, the use of the entire distribution
of measured residue data implicitly
assumes that some consumers ingest prod-
ucts with high (or low) contaminant levels
day after day, rather than being exposed at
random to the whole spectrum of contam-
inant concentrations over long periods.
Because residue levels are correlated to
some degree with brand name and with
geographic market, this assumption may
not be far off the mark. Similarly, the
ingestion rates for peanut butter and apple
juice may not be statistically independent.
If avid consumers of one product tend to
be high consumers of the other (the more
peanut butter ingested, the more liquid
needed to wash it down?), this analysis
would overstate the variability in the ratio
of the two exposures.

Using alternative assumptions or data
sets could also shift the entire PDF
upwards or downwards (without affecting
its variance). For example, the central
estimate of the UDMH/aflatoxin ratio
would increase by approximately a factor
of two if the tumor site chosen by
CalEPA (40) was used to analyze the
UDMH bioassay data, and it would have
increased further if more recent data
reflecting increased apple juice consump-
tion in the United States during the
1980s had been available or if residue lev-
els in "apple juice for infants" had been
included (31). Similarly, it is plausible
that the estimate of UDMH's potency,
like all current estimates based on rodent
studies, is approximately seven times

lower than the true vali
mals were only expos
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However, the fact that
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#....8 .Both Alar-contaminated apple juice
and aflatoxin-contaminatedpeanut butter
posed small but not insinificant, individ-

.w..... :. :: ual andpopulation risks. A central-tenden-
cy estimate of either risk falls at approxi-
mately I an order of magnitude higher
than the one-in-one-million benchmark
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generally regarded as the dividing line
>............. between minimal and significant risk when

:|<$$t22--$ the exposed population is large. However,
..W....... '. ',:, .. ., ... ...

NtL ;-i--: .: .; while these central tendency estimates are
,::x,,.. *..'',,', only mildly troubling, the UCLs lie in the

WM-ww-w-< range of 1 in 10,000 to 1 in 5,000. Thus,
for the deliberately added contaminant

ME $.......... :$(Alar/UDMH), a substantial number of
preventable deaths may have been occur-

v... l' ''''''.,, . ...........
-Ss-; -; ring each year in the population of chil-

3 4 5 dren consuming apple juice, and a substan-
tial number of children may have been

ical dimethylhydrazine subjected to risk levels several hundred
)nte Carlo simulation times higher than those generally deemed
ence, x= 3 represents to be acceptable. [For a rough calculation,
in the opposite direc- consider only the subset of the approxi-
iat value compared to mately 2.5 million children born each year
stogram equals unity) in the United States who faced risks from
the 5th and 95th per- UDMH of at least 2 x 104/lifetime. If this

group made up 5% of each cohort, as
ue because the ani- Table 5 suggests, then each year there
ed for less than 2 would be at least 25 excess deaths attribut-
iral life span (48). able to UDMH exposure in this subgroup.
t other researchers This figure is roughly numerically equiva-
ierate other PDFs lent to the annual number of children
ing in mean and/or murdered in public schools (4), a problem
n Figure 2, is not a most people view as quite serious.]
is. Rather, it illus- Ironically, despite the various differ-
point: arguments ences in the underlying data and despite the
nt of uncertainty fact that this is a quantitative uncertainty
of the practice of analysis rather than a point-estimation exer-
sk ratios via point cise, the UCL in Table 5 is very close to the
) possible impreci- "plausible upper bound" of 1 in 4,000 that
sis undertaken here the Natural Resources Defense Council
s result from previ- computed for UDMH in its much-
about which point maligned "Intolerable Risk" report (49).
are resolved by the Actually, neither a Monte Carlo simulation
sis. Remaining dis- nor a complicated point-estimation exercise
ly how to compute is necessary to derive the approximate 1 in
it trivial, but they 4,000 lifetime risk estimate. Simply multi-
stions that should plying estimates for consumption (two 8-oz
that a priori, any glasses per day) and for residue level (20
distribution of val- ppb) that each lie between the mean and
ne that yields only the reasonable upper bound of their distrib-
ue otherwise is to utions yields a dose estimate about 2,000
cision-makers, and times smaller than the surface-area-adjusted
ff with a guess that dose (approximately 1 mg/kg/day) that
less (i.e., the point produced about a 50% tumor incidence in
absolute risk) than mice (in two different studies). As long as
attempts, but may the assumption of proportionality is reason-
cisely quantify the able, 1/2,000 of this TD50 represents a risk
work. of (0.5) (1/2000), or approximately 1 in

4,000 (44).
Overconfidentpronouncements are not

Le important impli- a good way to rank risksfor decision-mak-
ment and risk com- ers and the public. A social/political con-
fic to the case ana- troversy continues to ferment as to
il goal of improving whether numerical comparisons of risk
L. should be used in isolation to inform peo-
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ple what to worry about (11), given that
people may legitimately regard a "smaller"
risk as more worthy of attention or control
than a "larger" one, depending on factors
outside the purview of such quantitative
rankings (e.g., issues involving dread, fea-
sibility of control, locus of responsibility,
and distributional equity). Even if analysts
could somehow be sure that their numeri-
cal results would be used to supplement
rather than monopolize this much larger
priority-setting arena, however, they
remain responsible for at least reporting in
a thorough and honest fashion the nar-
rower comparisons they purport to make.
In this case, even if all other relevant fac-
tors had no effect on the risk comparison,
it would be misleading to declare peanut
butter the larger risk, when there is a 50%
chance (if this analysis is exactly correct)
or a 10% chance (even if this analysis is
off by 18-fold in a particular direction)
that such a statement is not true, even in a
limited numerical sense. Recently, Ames'
colleague Gold has claimed that their
body of work on risk comparison was not
designed to make or to encourage quanti-
tative risk comparisons (50). Gold states
that because of their well-known belief
that there is little or no scientific basis for
extrapolating from animal bioassays to
human environmental risks, readers of
their papers understand that they are not
actually presenting risk estimates, but
"merely ranking possible hazards." If
these rankings are so uncertain as to be
meaningless, however, then why express
all the HERP indices to two significant
figures, and why write that "the public
might be better served if EPA were to pre-
sent its risk assessments as comparisons to
its estimates of risks from cups of coffee,
beers, and so forth" (51)? A number can-
not simultaneously be both extremely pre-
cise and infinitely uncertain; I maintain
that quantitative uncertainty analysis is far
superior to point estimation, no matter
how many retrospective caveats are later
placed on the point estimates.

The problems created by overconfident
point estimates only increase with large
CRA, because the kind of risks EPA, the
U.S. Office of Management and Budget,
Congress, and others wish to rank are
much less straightforward to compare than
even this rather uncertain comparison of
two carcinogenic food contaminants.
Returning to the radon/hazardous waste
example cited at the beginning of this arti-
cle, the CRA presented here should cast
doubt on the definitive statements from
EPA and the media that radon is exactly
40 times "worse" (or 2,400 times less effi-
cient, if the additional and uncertain
dimension of cost is also included) than
the Superfund problem.

Uncertain risk comparisons, despite
their complexity, are much preferable to
avoiding quantification altogether.
Although it is always simpler to criticize a
misleading practice than to thoroughly
describe a practical alternative, there are
three cornerstones of decision-making
under uncertainty that should help
improve the way we calculate and commu-
nicate environmental and health risk com-
parisons. The message of this article is cer-
tainly not that we should eschew priority-
setting-that would itself be contradictory,
as priorities set by default or inertia are no
less real than ones set consciously. Rather,
the goal is to understand how formal
analysis can inform priority-setting and
where it must leave off and allow for cre-
ativity and subjectivity.

First, individual and social decision-
makers must use the depiction of uncer-
tainty to evaluate the probabilities and the
consequences of making errors in their
decisions, not just as another tool to answer
an intellectual question about the magni-
tude of two disembodied problems. The
decision determines how confident one
needs to be that the larger risk is indeed
larger. If the stakes are not high and large
errors are not extremely more dangerous
than smaller errors, then the central ten-
dency of the risk ratio may be enough to go
on. For example, if you are most concerned
about picking the fruit with fewer calories,
it may be sufficient to know that the aver-
age apple has, say, 80 calories to the average
orange's 90, even if both values can range
30 calories above or below their averages.
In this hypothetical case, you might be con-
tent to be only reasonably sure that apples
were less caloric than oranges, given that
even the worst portion of the rest of the
distribution (the apple really has 1 0 calo-
ries to the orange's 60) does not lead to a
decision costly enough to outweigh the
benefits of being right on average. On the
other hand, high stakes and/or asymmetries
in the decision problem make it more
important for the thoughtful decision-
maker or risk communicator to consider
the full range of possibilities and carefully
evaluate which decision is best, rather than
simply which risk is larger.

For the practical rather than the intel-
lectual exercise, risk management thus
involves, among other goals, trying to min-
imize the regret associated with the chosen
option (where "regret" is a personal judg-
ment related to the various costs incurred
if the option chosen turns out to be inferi-
or to another available one) (52). In the
Alar/aflatoxin example, the question of
which risk is worse is only a proxy for the
real question of what to do about either or
both substances. In the latter context, and
given the results in Table 5, the individual

or the regulator must balance, say, the 5%
chance that ignoring or delaying action on
Alar would erroneously leave unaddressed
a problem 34 times greater than aflatoxin,
against an equal chance that the opposite
decision would focus attention on a prob-
lem 376 times smaller than aflatoxin (or,
assuming that nothing more can be done
about the natural carcinogen, the choice
becomes one between some probability of
spending resources on a problem many-
fold smaller than a background risk already
accepted by society, versus ignoring a
problem erroneously deemed smaller than
the tolerated risk). Again, needlessly defini-
tive statements that one of these risks is
exactly x times worse than the other robs
the listener of the knowledge that the sim-
plistic choice might be wrong by any crite-
rion he might use to value the risks.

Second, decision-makers and analysts
also need to understand that there is noth-
ing wrong with using point estimates to
inform and simplify their tasks. After all,
the quantitative aspect of environmental
decisions hinges on numbers, not on
abstract curves that subsume an infinite set
of discrete estimates. But different kinds of
point estimates are appropriate for differ-
ent decision-making goals, and the unwit-
ting choice of an estimate can confound
the decision. For example, if the decision-
maker's goal here was simply to maximize
the probability of addressing the larger
risk, then the median of the risk-ratio PDF
would be the appropriate anchor, and
either of the possible decisions would have
a virtually identical error rate. If the goal
instead was to minimize the expected cost
of the decision (assuming cost was propor-
tional to the true absolute difference
between the two risks, so that incorrectly
ignoring a much larger risk would be cost-
lier than ignoring a slightly larger risk),
then a comparison of the means of each
PDF would be appropriate, and Alar
would emerge as the higher priority. And if
the goal was to minimize the chance of an
extremely bad decision, the appropriate
choice of a summary point estimate would
depend on whether the decision-maker was
more averse to gross errors of overspending
or underprotecting (or to errors that favor
ignoring a deliberately added contaminant
versus those that favor ignoring a naturally
occurring toxin). Because the UDMH risk
distribution has both a longer right-hand
tail and a longer left-hand tail than the
aflatoxin PDF, either risk could be the pri-
ority depending on which percentile (near
the 5th or near the 95th) corresponded to
the eventuality the decision-maker particu-
larly wished to avoid.

Finally, optimal decision-making
requires careful attention to the twin influ-
ences of uncertainty and interindividual
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variability. The latter is a property of the
system being studied which causes different
estimates to be valid for different individu-
als (and which is generally irreducible
through further study); the former is a
property of the investigator (and his limited
knowledge of the system) which generally
can be reduced through further study (18).
The results presented to this point deliber-
ately intermingle uncertainty and variabili-
ty. For societal decision-making, the two
phenomena can be usefully combined. The
PDFs in Table 5 essentially represent the
uncertainty in risk to a person selected at
random from the exposed population.
Thus, the fact that the 95th percentile risk
estimate for UDMH is 1.83 x 10-4 does
not necessarily mean that 5% of the popu-
lation faced risks at this level or higher, nor
does it necessarily mean there was a 5%
chance everyone's risk was this large; rather,
it means that knowing nothing about the
consumption habits or exposure history of
an individual, there is a 5% chance his or
her individual risk was above this value.
Similarly, the mean of 4.6 x 10-5 can be
interpreted as 1/Ntimes the expected num-
ber of excess deaths in a random population
of Npersons exposed to UDMH.

The PDFs summarized in Table 5 are
really made up of a family of uncertainty
distributions, which average out to the
composite statistics presented; each distrib-
ution is applicable to a person at a particu-
lar fractile of the underlying variability dis-
tribution. For example, one could replace
two of the three input PDFs in the spread-
sheet (for consumption and residue levels)
with deterministic values and arrive at
statements of the following type: for an
individual whose exposure to UDMH puts
him at the 95th percentile of the popula-
tion, there is an 80% chance (here due
entirely to uncertainty in carcinogenic
potency) that his risk is between 1.1 x 10-
and 6.5 x 10-, with a median value of 4.4
x 104. Therefore, even though both vari-
ability and uncertainty are irreducible (if a
decision must be made today) from the
government's vantage point, the individual
can reduce uncertainty by considering
where he or she falls in the population
with respect to the characteristics that are
variable. Of course, some of the compo-
nents of variability in this example are easi-
er to resolve than others. Although it
would not be apparent from the definitive
nature of the 18:1 pronouncements, a fre-
quent peanut butter consumer might real-
ize that in relative terms, Alar was even less
of a problem than this assessment suggests,
and conversely for the frequent apple juice
consumer (whose absolute risk might
closely approximate the narrower PDF ref-
erenced earlier in this paragraph). Even an
individual's relative risk due to residue 1ev-

els might to some extent be clarified, as
government or private organizations could
analyze and publish the variation in residue
levels by region, brand, or type of product
(e.g., store-bought peanut butter versus the
more highly contaminated "grind-your-
own") (29). And, at least in the case of
aflatoxin risk, motivated citizens could
learn more about their own biologic sus-
ceptibility (to the extent that tests for
hepatitis B virus antibodies accurately indi-
cate higher risk).

Social decision-makers can also profit
from attempts to decouple uncertainty and
variability, as they can then intelligently
rephrase the questions at hand. The ques-
tions of whether aflatoxin is riskier than
Alar or whether radon is a bigger problem
than Superfund sites are needlessly overag-
gregated; both for thorough risk communi-
cation and for more creative control strate-
gies, more useful questions would be, for
whom is risk A worse than risk B? Thus,
rather than declaring that radon abatement
should increase at the expense of waste-site
cleanups, EPA might try to identify partic-
ular situations where marginal decreases in
risk from the latter problem might be fore-
gone to target efforts at "hot spots" of
radon risk. Similarly, in situations where
societal decision-makers wished to compare
risks solely based on their expected popula-
tion consequences (i.e., without regard to
individual risk levels or their distribution),
substituting deterministic average values for
consumption and residue levels would yield
a narrower distribution measuring only the
uncertainty in the expected number of
excess fatalities. In this case, of course, the
aflatoxin and UDMH distributions would
still substantially overlap.

Conclusions
CRA will never be both technically valid
and acceptable to citizens and government
unless it tells people both what they want
to know and how well they can know it.
Deciding what to compare is inherently
difficult because any two risks differ in
many ways. Risk assessors will naturally
gravitate toward presenting statistical mea-
sures of harm rather than comparing other
dimensions of risk that may have more
influence on individual and public judg-
ment (e.g., citizens may rather save fewer
lives by spending more on Superfund sites
than on radon abatement because they per-
ceive the former as also redressing an injus-
tice committed in the past). This focus on
risk estimates need not be counterproduc-
tive, as long as analysts and regulators
understand that risk statistics are like the
proverbial lamp post: if the lost keys are
underneath it one need not look further,
but one should not be surprised not to find
them there.

In considering how to compare risk
statistics, on the other hand, it is only
slightly more difficult to do it well than to
do it badly. At a minimum, analysts should
estimate and communicate some measure
of the lower and upper bounds of each risk
ratio, rather than just a measure of central
tendency or a qualitative pronouncement
about which risk is definitely "worse." In
cases where one risk is almost certainly
larger than another, this mode of commu-
nication should reinforce the distinction
and increase confidence and trust (e.g., risk
A is at least 10 times larger than risk B,
and may be as much as 500 times larger).
In other cases such as the Alar/aflatoxin
example, where the lower and upper
bounds reveal an ambiguous rank order,
this fact should not be hidden, but turned
from an adversary into an ally by one sim-
ple step: admitting that any rank ordering
or any decision that flows from it will not
be iron-clad, but will be informed by what
the numbers say and what they don't (or
cannot yet) say. Point estimates of uncer-
tain risk comparisons offer a simplicity that
makes decisions easier but makes wrong
decisions well-nigh inevitable. Rather than
either blinding ourselves to the numbers or
letting the numbers usurp all our power to
discern and choose, we should start fresh
with Schopenhauer's apt advice: "the
value of what one knows is doubled if one
confesses to not knowing what one does
not know."
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INSTITUTE IN WATER POLLUTION CONTROL
MANHA7TAN COLLEGE, Riverdale, NY

June 5-9, 1995
Manhattan College's fortieth annual Institute in Water Pollution Control will take place on June 5-9, 1995 in
the Manhattan College Leo Engineering Building, Riverdale, New York. Two courses, which run concurrent-
ly, will be offered: Modeling of Transport, Fate, and Bioaccumulation of Toxic Substances in Surface Waters,
and Treatment of Municipal, Hazardous and Toxic Wastewaters. These week-long courses have much to
offer young engineers and also older professionals who have not been able to stay abreast of the rapidly
changing field. Set in a classroom atmosphere, the courses allow for dialog between lecturer and partici-
pants. The fee per course is $1,050 and includes a set of notes for each attendee.

For additional information, contact: Ms. Eileen Lutomski, Program Coordinator,
Manhattan College, Environmental Engineering Department, Riverdale, NY 10471
Phone (718) 920-0277; FAX (718) 543-7914
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